Structure and Conformation of α^{\prime}-Diphenylphosphinoyl Enones: X-Ray Structure of E-(5SR,6SR)-3,6-Dimethyl-5-diphenylphosphinoyl-7-triphenylmethoxyhept-2-en-4-one

Michael J. Doyle, David Hall, Paul R. Raithby, Nicholas Skelton and Stuart Warren* University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK

A series of α^{\prime}-diphenylphosphinoyl enones has been prepared and their s-cis or s-trans conformations correlated with ${ }^{1} \mathrm{H}$ NMR and IR spectra and an X-ray crystal structure of the title compound. The effect of chelation to cerium(iII) is correlated with the regio- and stereo-selectivity of reductions under the Luche conditions.

We have been studying stereoselective reactions of the α^{\prime} diphenylphosphinoyl ($\mathrm{Ph}_{2} \mathrm{PO}$)-enones 3, 4 and 5. New chiral centres can be generated with control at $\mathrm{C}=\mathrm{O}$ by 1,2 -reduction ${ }^{1}$ with $\mathrm{NaBH}_{4}-\mathrm{CeCl}_{3}$ to give single diastereoisomers ${ }^{2}$ of the allylic alcohols 2 , at $\mathrm{C}-\alpha$ (in 3) by 1,4 -reduction with NaBH_{4} or $\mathrm{H}_{2}-\mathrm{Pd}-\mathrm{C}$, at $\mathrm{C}-\beta$ by Michael addition, at $\mathrm{C}-\alpha$ and $\mathrm{C}-\beta$ by the Diels-Alder reaction, and at $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\alpha$ by epoxidation of single diastereoisomers of the allylic alcohols $2\left(\mathrm{R}^{3}=\mathrm{H}\right)$. Prediction and explanation alike require a detailed knowledge not only of the configuration of 4 and 5 , but also of the conformation of all the enones in solution.

4

5

6

s-trans-5b

s-cis-5b

Many important stereoselective reactions ${ }^{3}$ depend on the conformation of enones or related compounds. Diels-Alder reactions ${ }^{4}$ on α^{\prime}-hydroxy enones ${ }^{5}$ and esters of acrylic acids ${ }^{6}$ and Michael additions to chiral oxazolines ${ }^{7}$ and sulfoxides ${ }^{7}$ create new chiral centres by stereoselective attack on one face of a conformationally rigid grouping of $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$, though which conformation is often best deduced from the stereochemistry of the products. Masamune's α^{\prime}-hydroxy enones ${ }^{5}$ must react in the s-cis conformation, but Oppolzer ${ }^{6}$ was able to show by X-ray crystal analysis ${ }^{9}$ and IR spectroscopy ${ }^{10}$ that his acrylate esters have the s-trans conformation in the solid

Table 1 Synthesis of $\alpha^{\prime}-\mathrm{Ph}_{2} \mathrm{PO}$-enones

Compound	R^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}	X	Yield ${ }^{\text {a }}$
3a	H	Me	Me	-	50
3b	But	H	Me	-	46
3c	4-MeOC6 H_{4}	H	Me	-	67
3d	Me	$\mathrm{Pr}^{\text {i }}$	H	-	77
3 e	$\mathrm{Bu}^{\text {s }}$	Me	Me	-	78
3 f	$\mathrm{C}_{6} \mathrm{H}_{11}{ }^{\text {b }}$	Me	Me	-	58
4a	${ }^{\text {c }}$	H	Me	Ph	21
5 a	-	H	Me	Ph	20
4b	-	Me	H	Ph	25
5b	-	Me	H	Ph	23
4 c	-	H	Me	$\mathrm{CH}_{2} \mathrm{OCPh}_{3}$	36
5 c	-	H	Me	$\mathrm{CH}_{2} \mathrm{OCPh}_{3}$	21
$4 d$	-	Me	H	$\mathrm{CH}_{2} \mathrm{OCPh}_{3}$	41
5 d	-	Me	H	$\mathrm{CH}_{2} \mathrm{OCPh}_{3}$	23
4 e	-	Me	Me	$\mathrm{CH}_{2} \mathrm{OCPh}_{3}$	42
5 e	-	Me	Me	$\mathrm{CH}_{2} \mathrm{OCPh}_{3}$	27

${ }^{a}$ Compounds 4 and 5 were separated by HPLC from the $c a .1: 1$ mixture obtained in the Swern oxidation of $2 .{ }^{b}$ Cyclohexyl.
state, exist as an equilibrium in solution, and that complexation to a Lewis acid catalyst may fix the molecule again in one, not necessarily the same, preferred conformation. We report that a combination of X-ray crystal analysis, ${ }^{1} \mathrm{H}$ NMR with NOE experiments and complexation to a Lewis acid, and IR spectra can be used to define the conformation of $\alpha^{\prime}-\mathrm{Ph}_{2} \mathrm{PO}$-enones in solution and hence explain or even predict the stereoselectivities of their reactions.

The enones 3 were prepared by addition of enals to the lithium derivatives of the phosphine oxides 1 to give mixtures of allylic alcohols 2 which were oxidised directly under Swern ${ }^{11}$ conditions to the enones 3 (Table 1). Compounds with a chiral R^{1} substituent were formed as a roughly $1: 1$ mixture and were separated by HPLC to give pure samples of the diastereoisomers 4 and 5. X-Ray crystal structure analysis of $\mathbf{5 e}$ ($\mathrm{X}=\mathrm{CH}_{2} \mathrm{OCPh}_{3}, \mathrm{R}^{2}=\mathrm{R}^{\mathbf{3}}=\mathrm{Me}$) gave the relative configuration at the two chiral centres (Fig. 1).

Crystal Structure Determination of E-(5SR,6SR)-3,6-Dimeth-yl-5-diphenylphosphinoyl-7-triphenylmethoxyhept-2-en-4-one 5e.-Suitable transparent crystals of the compound were grown after HPLC by crystallisation from ethyl acetate-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$). The crystals contain a solvent molecule of acetone.

Crystal data. $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{P} . \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, M=656.76$, triclinic, $a=11.967(6), b=12.380(8), c=14.270(8) \AA, \alpha=72.87(5)$, $\beta=87.71(4), \delta=67.38(4)^{\circ}, v=1858.5 \AA^{3}$ (by least-squares

Fig. 1 Crystal structure of $E-(5 S R, 6 S R)$-3,6-dimethyl-5-diphenyl-phosphinoyl-7-triphenylmethoxyhept-2-en-4-one 5e. The formula is numbered as in Table 3.
refinement of diffractometer angles from 25 automatically centred reflections in the range $50<2 \theta<60^{\circ}, \lambda=$ $1.54178 \AA$), $Z=2, D_{\mathrm{c}}=1.173 \mathrm{~g} \mathrm{~cm}^{-3}$, space group $P \overline{\text { (}}$ (No. 2), $F(000)=700$. Transparent block, dimensions $0.25 \times 0.48 \times$ $0.52 \mathrm{~mm}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=9.68 \mathrm{~cm}^{-1}$.

Data collection and processing. Nicolet $\mathrm{R} 3 \mathrm{~m}_{\mu}$ four-circle diffractometer, graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, $96-$ step $\omega-2 \theta$ scan mode, scan width from 1.0° below K_{α}, to 1.0° above $K_{\alpha 2}$, scan speed $2.5-29.3^{\circ} \mathrm{min}^{-1}$, 5300 reflections measured ($5.0 \leqslant 2 \theta \leqslant 116.0^{\circ}, \pm h,-k, \pm l$), 4949 unique, [$R_{\text {int }}=0.015$ after empirical absorption correction using 311 azimuthal scan data and an ellipsoid model (transmission factors, minimum, maximum $0.495,0.940$)] 4203 with $F>$ $4 \sigma(F)$. Three standard reflections showed no significant variation in intensity.

Structure analysis and refinement. Direct methods and subsequent Fourier difference synthesis for all non-hydrogen atoms. Hydrogen atoms placed in idealised positions ($\mathrm{C}-\mathrm{H}$, $0.96 \AA$) and allowed to ride on the relevant carbon; each type of H was assigned a common isotropic thermal parameter. Blocked cascade least-squares refinement with all non-hydrogen atoms anisotropic. The weighting scheme $w=\sigma^{2}(F)+$ $0.0012\left(F^{2}\right)$ gave satisfactory agreement analyses. The converged residuals were $R=0.077$ and $R^{1}=0.081$, a final Fourier difference map showed no residual peaks above $0.57 e^{\AA^{-3}}$. Final atomic coordinates for the non-hydrogen atoms are given in Table 2.

The structure was solved and refined using the SHELXTL package ${ }^{12}$ implemented on a Data General Desktop 30 computer. Additional material available from the Cambridge Crystallographic Data Centre* comprises H-atom co-ordinates, thermal parameters and full listings of bond lengths and angles.

Configuration and Conformation around the Two Chiral

[^0]Table 2 Atomic coordinates $\left(\times 10^{4}\right)$ for compound 5 e.

	x	y	z
C(1)	2410(6)	9 278(6)	157(3)
C(2)	2 482(4)	8 955(5)	1247 (3)
C(3)	$3254(3)$	$7920(4)$	$1871(3)$
C(4)	4 217(5)	$6857(6)$	$1582(4)$
C(5)	3 244(3)	7 672(3)	2 959(2)
C(6)	2 226(3)	$8521(3)$	3 405(2)
C(7)	2729 (3)	8 801(3)	4 254(2)
C(8)	3 696(3)	$9323(3)$	3 893(2)
C(9)	1723 (3)	$9659(3)$	4 688(3)
C(11)	4 078(3)	11 784(3)	3 269(2)
C(12)	4 933(4)	12 304(4)	3 079(3)
C(13)	5 036(4)	13 038(4)	3 623(3)
C(14)	4 296(4)	13 262(4)	4346 (3)
C(15)	3 444(4)	12 768(3)	4 546(3)
C(16)	3 313(3)	12 038(3)	4003 (3)
C(21)	$3123(4)$	12 006(3)	1 690(2)
C(22)	$1891(3)$	12 302(3)	1560 (3)
C(23)	$1219(4)$	13 154(4)	711(3)
C(24)	$1736(4)$	13 736(4)	-17(3)
C(25)	$2957(4)$	13 482(4)	97(3)
C(26)	3 647(3)	12620 (3)	944(3)
C(31)	$5066(3)$	10 155(3)	2383 (3)
C(32)	$6161(3)$	9 648(4)	2967 (3)
C(33)	$7162(4)$	8770 (4)	2 755(4)
C(34)	$7119(4)$	$8368(4)$	1966 (4)
C(35)	$6038(4)$	8 836(4)	1393 (3)
C(36)	$5045(3)$	9 724(3)	$1595(3)$
C(41)	$1013(3)$	$7151(3)$	2 848(2)
C(42)	$1703(4)$	5920 (3)	$3002(3)$
C(43)	$1751(4)$	5 386(4)	2 267(3)
C(44)	$1085(4)$	6 087(4)	$1381(3)$
C(45)	400(4)	7 306(4)	$1212(3)$
C(46)	349(3)	7846 (3)	1947 (3)
C(51)	$1357(3)$	$6836(3)$	4 927(2)
C(52)	2 519(4)	5 963(3)	5 307(3)
C(53)	$2685(5)$	5 104(4)	6 223(3)
C(54)	$1740(7)$	$5123(5)$	$6764(4)$
C(55)	578(7)	$5975(6)$	6412(4)
C(56)	380(4)	$6845(4)$	$5492(3)$
C(10)	$3891(3)$	11 064(3)	2 623(2)
O(1)	-189(2)	8 968(2)	3 658(2)
O(2)	$4038(2)$	$6779(2)$	3 507(2)
$\mathrm{O}(3)$	3 141(2)	10 409(2)	3 081(2)
P(1)	$1008(1)$	7 946(1)	3 726(1)
O(61)	8 375(4)	1 192(4)	2743 (3)
C(61)	8 722(6)	$1716(6)$	$1920(4)$
C(62)	$9610(4)$	1221 (5)	$1580(4)$
C(63)	$7718(9)$	$3019(6)$	$1465(6)$

Centres in 4 and 5.-Correlation of the configuration of $E-5 \mathrm{e}$ with the other compounds 4 and 5 was established by ${ }^{1}$ H NMR spectra (Table 3; protons are identified in the diagrams of 4 and 5 accompanying the Table) showing that, in all cases, the compound first eluted from HPLC was 4 and the second 5. Among the key diagnostic features is the larger coupling constant between H^{4} and \mathbf{H}^{5} for isomer $5, J_{4,5} \sim 10.5 \mathrm{~Hz}$, than for isomer $4, J_{4.5} 5.5-7.02 \mathrm{~Hz}$, suggesting that the conformation revealed by the X-ray structure with H^{4} and H^{5} disposed anti (Fig. 1) is also preferred in solution. The preferred conformation for the isomers 4 may be 6 or it may exist as an equilibrium between several conformations.

Conformation of the Enone Group.-The enone $\mathbf{5 c}$ is revealed by the X-ray structure to be s-trans. This is the theoretically preferred conformation ${ }^{13}$ and IR spectra ${ }^{14}$ suggest it is maintained in solution. Enones typically show a $\mathrm{C}=\mathrm{C}$ stretching frequency band at $c a .1620 \mathrm{~cm}^{-1}$ whatever the conformation, but the $\mathrm{C}=\mathrm{O}$ stretching frequency is normally $c a .1680 \mathrm{~cm}^{-1}$ for s-cis enones and ca. $1650 \mathrm{~cm}^{-1}$ for s-trans enones. By this

Table $3{ }^{\prime} \mathrm{H}$ NMR structural correlation of $\alpha^{\prime}-\mathrm{Ph}_{2} \mathrm{PO}$-enones 4 and $5^{\boldsymbol{a}}$

				 ans 4	${ }^{E} / H^{E}$	 s-tran	$\mathrm{Me}^{\mathrm{E}_{l}}$				
Compound	$R_{T}{ }^{\text {b }}$	$J_{\mathrm{PH}^{4}}$	J_{45}	$\delta_{\mathrm{H}}{ }^{5}$	$\delta_{\text {Me }}{ }^{\text {s }}$	$\delta_{\mathbf{H}^{4}}$	$\delta_{\text {Mc }^{2}}$	$\delta_{\mathrm{H}^{2}}$	$\delta_{\text {Me }}{ }^{\text {E }}$	$\delta_{\mathbf{H}^{\mathrm{F}}}$	$\delta_{\mathrm{H}^{2}}$
4a	c	d	d	$3.82{ }^{\text {d }}$	1.26	$3.82{ }^{\text {d }}$	-	6.53	1.76	-	6.72
5a	c	12.6	12.6	3.72	1.25	4.07	-	5.80	1.49	-	6.24
4b	17	11.0	7.0	3.79	1.23	4.55	1.46	-	-	5.66	5.95
5b	23	16.4	9.4	3.68	1.36	4.59	1.08	-	-	5.28	5.52
4 c	10	8.4	5.6	$2.75{ }^{\text {d }}$	1.00	3.96	-	6.20	1.66	-	6.64
5 c	13	13.8	10.4	$2.77{ }^{\text {d }}$	1.09	3.84	-	5.83	1.49	-	6.36
4 d	10	12.1	5.8	2.96	0.96	4.65	1.43	-	-	5.52	5.91
5d	13	17.2	10.5	$1.56{ }^{\text {d }}$	1.18	4.46	1.16	-	-	5.34	5.75
4e	13	13.1	7.0	$2.79{ }^{\text {d }}$	0.96	4.56	1.35	-	1.57	-	6.65
5e	17	18.5	10.7	$2.68{ }^{\text {d }}$	1.21	4.56	2.10	-	1.41	-	6.62

${ }^{a}$ Spectra recorded in CDCl_{3} at 250 MHz , chemical shifts (δ) in ppm, coupling constants (J) in Hz . ${ }^{b}$ Retention time (min) on HPLC (Dynamex prepacked column (2.14 mm internal diameter $\times 25 \mathrm{~cm}$) with a Gilson model 303 pump operating at $12 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$, eluting with EtOAc). ${ }^{c}$ Separated by column chromatography on silica eluting with $1: 1 \mathrm{EtOAc}$-light petroleum (b.p. $60-80{ }^{\circ} \mathrm{C}$), $\mathbf{4 a}$ had $R_{F} 0.20$ and $5 a R_{F} 0.16$. ${ }^{d}$ Not resolved.

Table 4 Conformation of the enone group by IR spectroscopy

Compound	Structural type	$v_{\text {max }} / \mathrm{cm}^{-1}$		
		$\mathrm{C}=\mathrm{C}$ stretch	$\mathrm{C}=\mathrm{O}$ stretch	
			s-cis	s-trans
3a	α, β-disubstituted	1630		1650
3b	β-monosubstituted	1620	1680	1645
3c	β-monosubstituted	1620	1680	1655
3d	x-monosubstituted	1650	-	1650
3e	α, β-disubstituted	1630	-	1650
3 f	α, β-disubstituted	1630	-	1630
4a	β-monosubstituted	1620	1710	1670
5a	β-monosubstituted	1620	1670	1650
4b	α-monosubstituted	1620	-	1660
5b	x-monosubstituted	1620	-	1655
4 c	β-monosubstituted	1615	1670	1650
5 c	β-monosubstituted	1640	1670	1655
4d	x-monosubstituted	1650	-	1720
5d	x-monosubstituted	1650	-	1710
4 e	α, β-disubstituted	1635	-	1650
5e	α, β-disubstituted	1705	-	1750

criterion (Table 4), enones 3,4 , and 5 with $R^{3}=H(e . g .3 d, 4 d$, $5 \mathrm{~d})$ or with R^{2} and $\mathrm{R}^{3} \neq \mathrm{H}$ (e.g. 3f, 4e, 5e) exist exclusively as the s-trans conformer, whereas enones with $R^{2}=H$ and $\mathrm{R}^{\mathbf{3}} \neq \mathrm{H}$ (e.g. 3b, 4c,5c) exist as equilibrium mixtures of s-cis and s-trans. One exception to the general rule is $\mathbf{5 b}$ which, although having $\mathrm{R}^{3}=\mathrm{H}$, nevertheless seems to exist as an s-cis, s-trans mixture by IR spectroscopy.

We hoped to confirm these assignments by solvent shift ${ }^{15}$ data in the ${ }^{1} \mathrm{H}$ NMR spectra. In fact, all classes of enones 3 , even those with $R^{2}=H$ and $R^{3} \neq H$, gave similar upfield shifts for H^{Z} on changing the solvent from CDCl_{3} to $\mathrm{C}_{6} \mathrm{D}_{6}$. This behaviour is expected only for the s-trans conformer which presents H^{Z} to the face of the solvating molecule of benzene 8 . The solvent shifts of other substituents agree: \mathbf{R}^{E} (which may be \mathbf{H}) shows a smaller upfield shift and \mathbf{R}^{2}, which is on the border between the up- and down-field zones ${ }^{15}$ shows little if any shift. Benzene solvent shifts are sadly of little help in assigning the conformation. It nevertheless seemed worthwhile to study the conformation of these open chain conformationally
flexible molecules by a variety of methods and draw at least some tentative conclusions in view of the stereoselective reactions they exhibit. ${ }^{2.16}$

Relationship between the Enone and the Chiral Centres.-The various stereoselective reactions under investigation involve the approach of reagents to one face or the other of the enone plane governed by the disposition of the large groups (e.g. $\mathrm{Ph}_{2} \mathrm{PO}$) in the rest of the molecule. In the solid state, the X-ray structure of 5e shows (Fig. 1; numbering as in Table 3) that H^{4} and H^{2} are syn planar with the $\mathrm{Ph}_{2} \mathrm{PO}$ group on one face of the enone and the R^{1} group on the other. This arrangement persists in solution as there is a clear NOE between H^{4} and H^{Z} and no NOE between H^{4} and either of the methyl groups on the enone. The other α, β-disubstituted enones, i.e. 3 with R^{2} and $R^{3} \neq H$, and the α-substituted enones, those with $R^{2} \neq H$ and $R^{3}=H$, showed similar NOEs. Our previous exception, the enone $\mathbf{5 b}$, was also an s-cis, s-trans mixture by this technique as it showed an NOE both between H^{2} and H^{4} and between H^{4} and Me^{2}.

Effect of Lewis Acids.--One of the reactions under study is the regioselective 1,2-reduction of the enones with NaBH_{4} under the Luche ${ }^{1}$ conditions $\left(\mathrm{CeCl}_{3}, \mathrm{MeOH},-78^{\circ} \mathrm{C}\right)$ which gives high yields of the erythro alcohols ${ }^{2} 9$. Without CeCl_{3}, the reduction occurs mostly 1,4 to give the saturated ketones 10 . We therefore studied the ${ }^{1} \mathrm{H}$ NMR spectra of the enones under the Luche reaction conditions without NaBH_{4}.

Though Ce^{3+} as a lanthanide might provide useful shift reagents, it has been little used ${ }^{17}$ as it tends to be oxidised to Ce^{4+} which is paramagnetic. However, we found Ce^{3+} behaved very well. The spectrum of 4 e in $\left[{ }^{2} \mathrm{H}_{4}\right] \mathrm{MeOH}$ at $-78^{\circ} \mathrm{C}$ was essentially the same as that in CDCl_{3} at $40^{\circ} \mathrm{C}$. Addition of CeCl_{3} caused small but significant changes. The ortho protons $\left(\mathrm{H}^{\circ}\right.$ in 11) were shifted downfield while the signal for Me^{5} disappeared. This latter effect is presumably a relaxation phenomenon and suggest a complex such as 11 in which the enone conformation and the syn planarity of H^{2} and H^{6} are essentially unaltered but the $\mathrm{Ph}_{2} \mathrm{PO}$ group has rotated to allow chelation of Ce^{3+} by $\mathrm{C}=0$ and $\mathrm{P}=\mathrm{O}$. Attack by NaBH_{4} on a complex such as 11 accounts for the observed stereoselectivity of the reduction. ${ }^{2}$

It would be neither possible nor correct to define a single

8

conformation for any of these molecules in solution, but the general picture built up by these studies is consistent with the stereoselectivity of the reactions ${ }^{2,16}$ and the approach of collecting tentative conclusions by a number of methods may be of value in attempts to understand other stereoselective reactions of open chain compounds.

Experimental

${ }^{1}$ H NMR were recorded on Bruker WM-250, Bruker WP80-SY, or Varian Associates E. M. 90 spectrometers. Tetramethylsilane (TMS) or (deuterochloroform) CDCl_{3} was used as an internal standard with chemical shifts (δ) given in parts per million (ppm) downfield from tetramethylsilane ($\delta=0$) and coupling constants (J) given in Hz . Low resolution mass spectra were recorded on a AEI-Kratos MS902 instrument, operating at 70 eV , and high resolution mass spectra were recorded on a AEI-K ratos MS30 double beam spectrometer with DS50 data system. Thin layer chromatography (TLC) was carried out on commercially prepared plates (Merck silica kieselgel $60 \mathrm{~F}_{250}$), eluting with ethyl acetate (EtOAc) unless otherwise stated. Flash column chromatography ${ }^{18}$ was carried out using Merck Kieselgel 60 (230-400 mesh) silica. Preparative high performance liquid chromatography (HPLC) was performed on a Dynamax prepack silica column (21.4 mm i.d. $\times 25 \mathrm{~cm} \mathrm{l}$), with a Gilson model 303 pump operating at $12 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ and a Cecil Instruments CE 212A UV monitor measuring absorbance at $256 \mathrm{~nm} . R_{\mathrm{T}}$ refers to the retention time. Melting points were determined on a Buchi 510 apparatus and are uncorrected. Micro-analyses were carried out by the Analytical Department of the University Chemical Laboratories, Cambridge. IR spectra were recorded in CHCl_{3} solution unless otherwise stated using Perkin-Elmer 297, 1310 and 983 spectrophotometers. All solvents were distilled and dried in the usual manner. ${ }^{19}$ THF was freshly distilled from lithium aluminium hydride $\left(\mathrm{LiAlH}_{4}\right)$ using benzophenone radical as an indicator. Dichloromethane was dried by distillation from $\mathrm{P}_{2} \mathrm{O}_{5}$. All non aqueous reactions were carried out under a dry nitrogen atmosphere. BuLi refers to commercial butyllithium (1.54 mol dm^{-3} solution in hexane).

3-Diphenylphosphinoyl-2-methylpropan-1-ol $\quad 1 \quad(\mathrm{R}=$ $\mathrm{CHMeCH}_{2} \mathrm{OH}$).-A solution of chlorodiphenylphosphine (33
$\mathrm{g}, 150 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(150 \mathrm{~cm}^{3}\right)$ was added slowly to a solution of 2-methylprop-2-en-1-ol ($10.8 \mathrm{~g}, 12.7 \mathrm{~cm}^{3}, 150 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(200 \mathrm{~cm}^{3}\right)$ and dry pyridine $\left(12 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The addition took 30 min . A white solid appeared immediately and stirring was continued for 1 h . The mixture was filtered and the solvent removed at reduced pressure under N_{2}. The oily residue was redissolved in toluene ($300 \mathrm{~cm}^{3}$) and heated at reflux for 1 day. The solvent was removed under reduced pressure and the solid residue was purified by chromatography, eluting with EtOAc. The olefin ${ }^{20}(24 \mathrm{~g}, 66 \%)$ was used directly in the following hydroboration ${ }^{21}$ step.

A solution of the olefin in dry THF ($150 \mathrm{~cm}^{3}$) was added to a suspension of sodium borohydride ($1.5 \mathrm{~g}, 4.0 \mathrm{mmol}$) in dry THF ($30 \mathrm{~cm}^{3}$) at room temperature. Boron trifluoride-diethyl ether ($3.6 \mathrm{~cm}^{3}, 30 \mathrm{mmol}$) was added over 30 min with cooling. After 1 h , water ($10 \mathrm{~cm}^{3}$) was added, followed by sodium hydroxide ($3 \mathrm{~cm}^{3}$ of a 12% solution) in one portion, then $\mathrm{H}_{2} \mathrm{O}_{2}$ ($3 \mathrm{~cm}^{3}$ of a 100 volume solution) added gradually. After 1 h the reaction mixture was extracted with EtOAc ($3 \times 150 \mathrm{~cm}^{3}$) and the organic portions dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation under reduced pressure and flash column chromatography, eluting with EtOAc, gave the alcohol ($24 \mathrm{~g}, 59 \%$ based on methylpropenol) as prisms, m.p. $133-135^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 69.9; H, 6.8; P. $11.2 \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{PO}_{2}$ requires $\mathrm{C}, 70.1 ; \mathrm{H}, 6.90 ; \mathrm{P}$, 11.3%); R_{F} (acetone) $0.5 ; v_{\max } / \mathrm{cm}^{-1} 3270(\mathrm{OH})$ and $1440(\mathrm{P}-$ $\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.85-7.41\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.60(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{ABX}, J_{\mathrm{HH}} 11.5,7.4, \mathrm{CHO}$), 3.44 (1 H , dd, ABX, $J_{\mathrm{HH}} 11.5,7.4$, CHO), 2.37-2.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}$), 2.15-2.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}$) and $0.98\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}} 7.0, J_{\mathrm{PH}} 1.0, \mathrm{CH} M e\right) ; m / z 274(\mathrm{M}, 10 \%)$, 256 (M - OH, 20\%), $244\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}, 25 \%\right), 215\left(\mathrm{Ph}_{2}{ }^{-}\right.$ $\mathrm{POCH}_{2}, 85 \%$) and $202\left(\mathrm{Ph}_{2} \mathrm{POH}, 100 \%\right)$.

3-Diphenylphosphinoyl-2-methyl-1-triphenylmethoxypro-

pane 1 ($\mathrm{R}=\mathrm{CHMeCH}_{2} \mathrm{OTr}$).-A solution of 3-diphenyl-phosphinoyl-2-methylpropan-1-ol ($3.0 \mathrm{~g}, 10.9 \mathrm{mmol}$) and trityl pyridinium tetrafluoroborate ${ }^{22}(5.0 \mathrm{~g}, 12.1 \mathrm{mmol})$ in dry acetonitrile ($150 \mathrm{~cm}^{3}$) was stirred at room temperature for 20 h . The solvent was removed under reduced pressure and the solid residue purified by flash column chromatography, eluting with EtOAc. The trityl ether was obtained as microprisms $(5.0 \mathrm{~g}$, 87%), m.p. $157-160^{\circ} \mathrm{C}$ (from EtOAc-light petroleum) (Found: $\mathrm{C}, 81.5 ; \mathrm{H}, 6.5$; P. 5.9. $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{PO}_{2}$ requires $\mathrm{C}, 81.4 ; \mathrm{H}, 6.40$; $\mathrm{P}, 6.0 \%), R_{\mathrm{F}} 0.50 ; v_{\text {max }} / \mathrm{cm}^{-1} 1580(\mathrm{Ph})$ and $1175(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.81-7.18\left(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\left.\mathrm{CPh}_{3}\right) 3.05-2.91$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OTr}$), 2.56 (1 H , ddd, $J_{\mathrm{HH}} 3, J_{\mathrm{HH}} 10, J_{\mathrm{PH}} 15, \mathrm{CHP}$), 2.33-2.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}$), 2.04-1.86 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHP}$) and 1.03 ($3 \mathrm{H}, \mathrm{d}, J_{\text {Hн }} 6.7, \mathrm{CH} M e$); $m / z 273(100 \%, \mathrm{M}-\operatorname{trityl}), 243(25 \%$, $\left.\mathrm{Ph}_{3} \mathrm{C}\right)$ and $201\left(35 \%, \mathrm{Ph}_{2} \mathrm{PO}\right)\left(\mathrm{M}^{+}\right.$was observed in the FAB mass spectrum).

1-Diphenylphosphinoyl-2-phenylpropane 1 ($\mathrm{R}^{1}=1$-phenyl-ethyl).-2-Phenylpropan-1-ol (4 g) with toluene-p-sulfonyl chloride and 4-dimethylaminopyridine gave the toluene- p sulfonate $(90 \%$), which with KI in dry THF gave 1 -iodo-2phenylpropane $(80 \%$). Lithium diphenylphosphide [from diphenylphosphine ($3.14 \mathrm{~cm}^{3}, 18 \mathrm{mmol}$) and $\mathrm{BuLi}\left(12.7 \mathrm{~cm}^{3}, 19.6\right.$ $\mathrm{mmol})$ in dry THF at $-78^{\circ} \mathrm{C}$] was added to the iodide $(4 \mathrm{~g}$, $16.3 \mathrm{mmol})$ in dry THF $\left(120 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After $12 \mathrm{~h}, \mathrm{NH}_{4} \mathrm{Cl}$ ($100 \mathrm{~cm}^{3}$ saturated solution) was added and the layers separated. The aqueous layer was extracted with dichloromethane ($3 \times 50 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvents removed under reduced pressure. The oil was dissolved in acetic acid ($120 \mathrm{~cm}^{3}$) and hydrogen peroxide ($15 \mathrm{~cm}^{3}$ of a 30% solution) added slowly. After 30 min the mixture was poured into ice-water with vigorous stirring. The solution was extracted with EtOAc ($3 \times 100 \mathrm{~cm}^{3}$). The combined organic layers were washed with sodium carbonate ($3 \times 100 \mathrm{~cm}^{3}$ of saturated solution), water $\left(3 \times 100 \mathrm{~cm}^{3}\right)$ and
brine ($3 \times 100 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvents removed under reduced pressure. Recrystallisation from EtOAc gave the phosphine oxide (97%) which was identified spectroscopically.

General Procedure for the Preparation of the Enones.--BuLi (11 mmol) was added to a solution of the phosphine oxide (10 $\mathrm{mmol})$ in dry THF $\left(100 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ with stirring. The coloured lithium derivative was cooled to $-78^{\circ} \mathrm{C}$ and the unsaturated aldehyde (11 mmol) added. After $30 \mathrm{~min}, \mathrm{NH}_{4} \mathrm{Cl}\left(50 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture allowed to warm to room temperature. Separation of aqueous and organic layers and extraction of the aqueous layer with $\operatorname{EtOAc}\left(3 \times 40 \mathrm{~cm}^{3}\right)$ gave, after drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporation, the alcohol as a mixture of diastereoisomers. This was used in the Swern oxidation without further purification. DMSO (20 mmol) was added to a solution of oxalyl chloride (14 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(50 \mathrm{~cm}^{3}\right)$ at $-55^{\circ} \mathrm{C}$. A solution of the alcohol was added slowly and the mixture stirred for 20 min . Triethylamine (50 mmol) was added and the mixture allowed to warm to room temperature. Evaporation of the solvent under reduced pressure and chromatography of the residue, eluting with EtOAc or EtOAclight petroleum (b.p. $60-80^{\circ} \mathrm{C}$) gave the ketone. Diastereoisomers were separated by HPLC.

E-1-Diphenylphosphinoyl-3-methylpent-3-en-2-one 3a. Methyldiphenylphosphine oxide ($3 \mathrm{~g}, 13 \mathrm{mmol}$) and 2-methylbutenal ($1.3 \mathrm{~cm}^{3}, 13 \mathrm{mmol}$) gave the enone as needles ($1.9 \mathrm{~g}, 50 \%$); m.p. $105-106{ }^{\circ} \mathrm{C}$ (from EtOAc-light petroleum) (Found: C, 72.3; H, $6.25 ; \mathrm{P}, 10.4 \% ; \mathrm{M}^{+}, 298.1132 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{PO}_{2}$ requires $\mathrm{C}, 72.5 ; \mathrm{H}$, 6.4; $\mathrm{P}, 10.4 \% ; M, 298.1211) ; R_{\mathrm{F}} 0.45 ; v_{\max } / \mathrm{cm}^{-1} 1650(\mathrm{C}=\mathrm{O})$, $1630(\mathrm{C}=\mathrm{C}), 1580(\mathrm{Ph})$ and $1440(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.81-$ $7.41\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 6.91\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}} 1.3, J_{\mathrm{HH}} 6.9,=\mathrm{CH}\right), 3.85$ $\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 15.5, \mathrm{CHP}\right), 1.84\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.9,=\mathrm{CMe}\right)$ and 1.63 ($3 \mathrm{H}, \mathrm{s},=\mathrm{CMe}$); m/z 298 (M, 100\%), 283 (M - Me, 30\%), 215 ($\mathrm{Ph}_{2} \mathrm{POMe}, 50 \%$) and 201 ($\mathrm{Ph}_{2} \mathrm{PO}, 70 \%$).

E-6,6-Dimethyl-5-diphenylphosphinoylhept-2-en-4-one 3b. 1-Diphenylphosphinoyl-2,2-dimethyl propane ${ }^{23}$ ($2 \mathrm{~g}, 7.4 \mathrm{mmol}$) and but-2-enal $\left(0.63 \mathrm{~cm}^{3}, 7.4 \mathrm{mmol}\right)$ gave after chromatography, eluting with EtOAc, the enone as needles ($1.1 \mathrm{~g}, 46 \%$); m.p. 196$197^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{C}, 73.9 ; \mathrm{H}, 7.4 ;$ P. 9.2. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{PO}_{2}$ requires $\mathrm{C}, 74.1 ; \mathrm{H}, 7.35 ; \mathrm{P}, 9.1 \%$; $\boldsymbol{R}_{\mathrm{F}} 0.66$; $v_{\max } / \mathrm{cm}^{-1} 3060(=\mathrm{CH}), 1680(\mathrm{C}=\mathrm{O}), 1654(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C})$, $1435(\mathrm{P}-\mathrm{Ph}), 1370(\mathrm{P}=\mathrm{O})$ and $1185 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.88-7.34$ $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 6.50\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{HH}} 16,6,=\mathrm{CH} \mathrm{Me}\right), 6.48(1 \mathrm{H}$, br d, $\left.J_{\mathrm{HH}} 16,=\mathrm{CH}\right), 3.8(1 \mathrm{H}, \mathrm{brd}, \mathrm{CHP}), 1.65\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6, \mathrm{Me}\right)$ and $1.07(9 \mathrm{H}, \mathrm{s} 3 \times \mathrm{Me}) ; m z 340(\mathrm{M}, 2 \%), 325(\mathrm{M}-\mathrm{Me}, 2 \%)$, $284(\mathrm{M}-\mathrm{Bu}, 15 \%), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 40 \%\right)$ and $69\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}, 100 \%\right)$.

E-1-Diphenylphosphinoyl-1-(4-methoxyphenyl)pent-3-en-2one 3c. (4-Methoxyphenyl)methyldiphenylphosphine oxide ${ }^{24}$ ($5 \mathrm{~g}, 14.8 \mathrm{mmol}$) and but-2-enal ($1.2 \mathrm{~cm}^{3}, 16 \mathrm{mmol}$) gave the enone as needles ($4.1 \mathrm{~g}, 67 \%$); m.p. $214-215^{\circ} \mathrm{C}$ (from EtOAclight petroleum) (Found: $\mathrm{C}, 73.3 ; \mathrm{H}, 5.9 ; \mathrm{P}, 7.7 . \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{PO}_{3}$ requires $\mathrm{C}, 73.85 ; \mathrm{H}, 5.90 ; \mathrm{P}, 9.95 \%$; $R_{\mathrm{F}} 0.56 ; v_{\text {max }} / \mathrm{cm}^{-1} 3060$ $(=\mathrm{CH}), 1680(\mathrm{C}=\mathrm{O}), 1655(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C}), 1500(\mathrm{Ph}), 1435$ $(\mathrm{P}-\mathrm{Ph})$ and $1175(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.83-7.26(12 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ and 2 H from Ar), $6.77\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{HH}} 7, J_{\mathrm{HH}} 15.5,=\mathrm{CH}\right)$, $6.74\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 7, \mathrm{Ar}\right), 6.40\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 15.5,=\mathrm{CH}\right), 4.83(1 \mathrm{H}, \mathrm{d}$, $\left.J_{\mathrm{PH}} 9.1, \mathrm{CHP}\right)$ and $1.75\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 7, \mathrm{Me}\right) ; m / z 390(\mathrm{M}, 10 \%)$, $322\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}\right), 219\left(\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}, 10 \%\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 50 \%\right)$ and $172\left(\mathrm{M}-\mathrm{Ph}_{2} \mathrm{PO}_{2}, 100 \%\right)$.

4-Diphenylphosphinoyl-2-isopropylpent-1-en-3-one 3d. Ethyldiphenylphosphine oxide ${ }^{24}(2 \mathrm{~g}, 8.7 \mathrm{mmol})$ and 2-isopropylpropenal $\left(1.12 \mathrm{~cm}^{3}, 9.3 \mathrm{mmol}\right)$ gave the enone as needles $(2.2 \mathrm{~g}$, 77%); m.p. 116-117 ${ }^{\circ} \mathrm{C}$ (from EtOAc-light petroleum) (Found: $\mathrm{C}, 73.9 ; \mathrm{H}, 7.3$; P. $9.3 \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{PO}_{2}$ requires $\mathrm{C}, 73.6 ; \mathrm{H}, 7.05 ; \mathrm{P}$, 9.5%); $R_{\mathrm{F}} 0.45 ; v_{\max } / \mathrm{cm}^{-1} 1650(\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}), 1580(\mathrm{Ph})$ and $1440(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.96-7.37\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 6.04$ $(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}), 5.68(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}), 4.34\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{HH}} 7.1, J_{\mathrm{PH}} 14.4\right.$, CHP), $2.69\left(1 \mathrm{H}\right.$, quin, $\left.J_{\mathrm{HH}} 6.7, \mathrm{CH} \mathrm{Me}_{2}\right), 1.43\left(3 \mathrm{H}\right.$, dd, $J_{\mathrm{HH}} 7.1$,
$\left.J_{\mathrm{PH}} 16.2, \mathrm{PC} H \mathrm{Me}\right), 0.90\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.8, \mathrm{Me}\right)$ and $0.72(3 \mathrm{H}, \mathrm{d}$, $\left.J_{\mathrm{HH}} 6.8, \mathrm{Me}\right) ; m / z 326\left(\mathrm{M}^{+}, 60 \%\right), 311(\mathrm{M}-\mathrm{Me}, 50 \%), 283$ (M - $\operatorname{Pr}^{\mathrm{i}}, 30 \%$), $219\left(\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}, 80 \%\right)$ and $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 100 \%\right)$.

E-3,7-Dimethyl-5-diphenylphosphinoyloct-2-en-4-one 3e. (3Methylbutyl)diphenylphosphine oxide ${ }^{24}(3 \mathrm{~g}, 11 \mathrm{mmol})$ and 2-methylbut-2-enal ($1.2 \mathrm{~cm}^{3}, 12 \mathrm{mmol}$) gave after flash column chromatography, eluting with EtOAc-light petroleum, the enone as needles ($3.0 \mathrm{~g}, 78 \%$); m.p. $170-172^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 74.3; H, 7.75; P. 8.65. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{PO}_{2}$ requires $\mathrm{C}, 74.6$; $\mathrm{H}, 7.65 ; \mathrm{P}, 8.8 \%$); $R_{\mathrm{F}} 0.37 ; v_{\max } / \mathrm{cm}^{-1} 1650(\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{C})$, $1580(\mathrm{Ph})$ and $1440(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.94-7.37(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 6.61\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}} 1.1, J_{\mathrm{HH}} 6.8,=\mathrm{CH}\right), 4.36\left(1 \mathrm{H}, \mathrm{ddd}, J_{\mathrm{HH}}\right.$ $2.4, J_{\mathrm{HH}} 7.2, J_{\mathrm{PH}} 18.0, \mathrm{CHP}$), 2.22-2.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $1.64(3 \mathrm{H}$, $\left.\mathrm{dd}, J_{\mathrm{PH}} 1.1, J_{\mathrm{HH}} 6.9,=\mathrm{CHMe}\right), 1.51(3 \mathrm{H}, \mathrm{s},=\mathrm{CMe}), 1.49-1.40$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}$), $0.82\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.5, \mathrm{CHM} \mathrm{Me}\right)$ and $0.77(3 \mathrm{H}, \mathrm{d}$, $\left.J_{\mathrm{HH}} 6.4, \mathrm{CHMe}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 198.1(\mathrm{C}=\mathrm{O}), 131-128.2$ (m, $\mathrm{Ph}_{2} \mathrm{PO}$), 139.7 (s, =C), 139.0 ($\mathrm{s},=\mathrm{C}$), 48.4 ($\mathrm{d}, J_{\mathrm{CP}} 56.9, \mathrm{CHP}$), 36.6 ($\mathrm{s},=\mathrm{CMe}$), 27.3 (d, $J_{\text {CP }} 12$, CHMe), $22.9(\mathrm{~s},=\mathrm{CMe}), 21.5(\mathrm{~s}$, CHMe), 14.8 (s, Me) and 11.1 (s, Me); $m / z 354$ (M, 45\%), 339 (M - Me, 20\%), 298 (M - $\mathrm{C}_{4} \mathrm{H}_{8}, 60 \%$), 229 (85%), 219 $\left(\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}, 80 \%\right)$ and $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 100 \%\right)$.

E-1-Cyclohexyl-1-diphenylphosphinoyl-3-methylpent-3-en-2one 3f. (Cyclohexylmethyl)diphenylphosphine oxide ${ }^{24}$ ($2 \mathrm{~g}, 6.7$ mmol) and 2-methylbut-2-enal ($0.7 \mathrm{~cm}^{3}, 7.1 \mathrm{mmol}$) gave the enone as prisms ($1.45 \mathrm{~g}, 58 \%$); m.p. $178-180^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 76.0; $\mathrm{H}, 7.7 ; \mathrm{P} .7 .9 . \mathrm{C}_{24} \mathrm{H}_{29} \mathrm{PO}_{2}$ requires $\mathrm{C}, 75.8 ; \mathrm{H}$, 7.6; P. 8.2%); $R_{\mathrm{F}} 0.44, v_{\text {max }} / \mathrm{cm}^{-1} 1630(\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}), 1580(\mathrm{Ph})$, and $1440(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.17-7.29\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 6.65$ $\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}} 1.1, J_{\mathrm{HH}} 6.7,=\mathrm{CH}\right), 4.16\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}} 10.4, J_{\mathrm{PH}} 17.5\right.$, CHP), 2.37-2.21 (1 H, m, CH), 2.02-1.90 (1 H, m, CH), 1.67 ($3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 1.1, J_{\mathrm{HH}} 6.7,=\mathrm{CMe}$), $1.61-1.47\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, $1.24(3 \mathrm{H}, \mathrm{s},=\mathrm{CMe})$ and $1.21-0.86\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; m / z 380(\mathrm{M}$, 80%), 365 (M - Me, 30\%), 298 (M - $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}, 100 \%$), 219 $\left(\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}, 85\right)$ and $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 95 \%\right)$.

E-5-Diphenylphosphinoyl-6-phenylhept-2-en-4-one 4a and 5a. 1-Diphenylphosphinoyl-2-phenylpropane ($500 \mathrm{mg}, 1.6 \mathrm{mmol}$) and but-2-enal $\left(0.16 \mathrm{~cm}^{3}, 1.8 \mathrm{mmol}\right)$ gave, after column chromatography, eluting with EtOAc-light petroleum, the first diastereoisomer of the enone as feathers ($130 \mathrm{mg}, 21 \%$); m.p. 206-208 ${ }^{\circ} \mathrm{C}$ (from EtOAc-light petroleum) (Found: $\mathrm{C}, 77.5 ; \mathrm{H}$, 6.45; P. 7.8. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{PO}_{2}$ requires $\mathrm{C}, 77.3 ; \mathrm{H}, 6.45 ; \mathrm{P}, 8.0 \%$) $\boldsymbol{R}_{\mathrm{F}}$ 0.2 (EtOAc-light petroleum $1: 1$); $v_{\max } / \mathrm{cm}^{-1} 1710(\mathrm{C}=\mathrm{O}), 1670$ $(\mathrm{C}=\mathrm{O})$ and $1430(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.74-6.84(15 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ and Ph$), 6.72\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{HH}} 6.8, J_{\mathrm{HH}} 15.4,=\mathrm{CH}\right), 6.53(1 \mathrm{H}$, $\left.\mathrm{dd}, J_{\mathrm{HH}} 15.4, J_{\mathrm{PH}} 1.1,=\mathrm{CH}\right), 3.89-3.76(2 \mathrm{H}, \mathrm{m}, \mathrm{CHP}$ and $\mathrm{CHMe}), 1.76\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 1.1, J_{\mathrm{HH}} 6.8, \mathrm{Me}\right)$ and $1.26\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}\right.$ 6.1, CHMe); m/z 388 (M, 2\%), 319 ($\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}, 10 \%$), 219 $\left(\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}, 30 \%\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 30 \%\right)$ and $84(100 \%)$.

The second diastereoisomer was obtained as feathers (125 mg , 20%); m.p. 206-208 ${ }^{\circ} \mathrm{C}$ (from EtOAc-light petroleum) (Found: $\mathrm{C}, 77.5 ; \mathrm{H}, 6.4$; P. 7.9. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{PO}_{2}$ requires $\mathrm{C}, 77.3 ; \mathrm{H}, 6.4 ; \mathrm{P}$, 8.0%); $R_{\mathrm{F}} 0.16$ (EtOAC-light petroleum); $v_{\text {max }} / \mathrm{cm}^{-1} 1670$ $(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{O}), 1615(\mathrm{C}=\mathrm{C})$ and $1440(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $8.09-7.07\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 6.24\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{HH}} 7, J_{\mathrm{HH}}\right.$ $15.4,=\mathrm{CH}), 5.80\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 15.4,=\mathrm{CH}\right), 4.07\left(1 \mathrm{H}, \mathrm{t}, J_{\mathrm{PH}}=\right.$ $\left.J_{\mathrm{HH}}=12.6, \mathrm{CHP}\right), 3.72(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}), 1.49\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.8\right.$, $=\mathrm{CHMe})$ and $1.25\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.8, \mathrm{Me}\right) ; m / z 388(\mathrm{M}, 10 \%), 319$ $\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}, 20 \%\right), 219\left(\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}, 70 \%\right)$ and $201\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$, 100%).

4-Diphenylphosphinoyl-2-methyl-5-phenylhex-1-en-3-one 4b and 5b. 3-Diphenylphosphinoyl-2-phenylpropane ($1 \mathrm{~g}, 3.2$ $\mathrm{mmol})$ and 2-methylpropenal $\left(0.26 \mathrm{~cm}^{3}, 3.2 \mathrm{mmol}\right)$ gave after HPLC, eluting with EtOAc, the first diastereoisomer ($R_{\mathrm{T}} 17$ min) as needles ($310 \mathrm{mg}, 25 \%$); m.p. $175-177^{\circ} \mathrm{C}$ (from EtOAclight petroleum) (Found: $\mathrm{C}, 77.05 ; \mathrm{H}, 6.37 ; \mathrm{P}, 8.26 . \mathrm{C}_{25} \mathrm{H}_{25} \mathrm{PO}_{2}$ requires $\mathrm{C}, 77.32 ; \mathrm{H}, 6.44 ; \mathrm{P}, 7.99 \%$; $R_{\mathrm{F}} 0.65 ; v_{\text {max }} / \mathrm{cm}^{-1} 1660$ $(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C})$ and $1175(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.81-6.92$ $\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 5.95(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 5.66\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}}\right.$
$1, \mathrm{C}=\mathrm{CH}), 4.55\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 11, J_{\mathrm{HH}} 9.5, \mathrm{CHP}\right), 3.79(1 \mathrm{H}$, sextet, $\left.J_{\mathrm{HH}}=J_{\mathrm{PH}}=7.0, \mathrm{CH} \mathrm{Me}\right), 1.46(3 \mathrm{H}, \mathrm{s},=\mathrm{CMe})$ and $1.23(3 \mathrm{H}, \mathrm{d}$, $\left.J_{\mathrm{HH}} 7.0, \mathrm{CH} M e\right) ; \delta_{\mathrm{C}^{\prime}}\left(\mathrm{CDCl}_{3}\right) 199(\mathrm{C}=\mathrm{O}), 146(\mathrm{C}=\mathrm{C}), 142$ (C=C), 125.9-132.8 (ArC), 57.6 (d, $\left.J_{\mathrm{CP}} 59, \mathrm{CP}\right), 39.9\left(\mathrm{~d}, J_{\mathrm{CP}} 2\right.$, $=\mathrm{CMe}), 21.1\left(\mathrm{~d}, J_{\mathrm{CP}} 10, \mathrm{CPh}\right)$ and $17.4(\mathrm{Me}) ; m / z 388(2 \%, \mathrm{M})$, $319\left(12 \%, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}\right), 243(20 \%)$ and $202\left(100 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$.

The second diastereoisomer ($R_{\mathrm{T}} 23 \mathrm{~min}$) was obtained as feathers ($270 \mathrm{mg}, 23 \%$); m.p. $153-154^{\circ} \mathrm{C}$ (from EtOAc-light petroleum) (Found: C, 77.09; H, 6.32; P, 7.97. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{PO}_{2}$ requires C, $77.32 ; \mathrm{H}, 6.46 ; \mathrm{P}, 7.99 \%$); $R_{\mathrm{F}} 0.65 ; v_{\text {max }} / \mathrm{cm}^{-1} 1655$ $(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C}), 1580(\mathrm{Ph})$ and $1185(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 8.28-7.06 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph), $5.52(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}), 5.28$ ($1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 1.0,=\mathrm{CH}$), $4.59\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 16.4, J_{\mathrm{HH}} 9.4, \mathrm{CHP}\right.$), $3.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CHPh}), 1.36\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 7.0, \mathrm{CH} M e\right)$ and 1.08 ($3 \mathrm{H}, \mathrm{s},=\mathrm{CMe}$); $m / z 388(2 \%, \mathrm{M}), 319\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}, 15 \%\right), 243$ (33%) and $202\left(\mathrm{Ph}_{2} \mathrm{POH}, 100 \%\right)$.

E-5-Diphenylphosphinoyl-6-methyl-7-triphenylmethoxyhept-2-en-4-one 4c and 5c. 3-Diphenylphosphinoyl-2-methyl-1-triphenylmethoxypropane ($2 \mathrm{~g}, 4 \mathrm{mmol}$) and but-2-enal ($0.4 \mathrm{~cm}^{3}$, 4.4 mmol) gave after HPLC, eluting with EtOAc, the first diastereoisomer ($R_{\mathrm{T}} 10 \mathrm{~min}$) as prisms ($820 \mathrm{mg}, 36 \%$); m.p. $162-$ $163{ }^{\circ} \mathrm{C}$ (from EtOAc-light petroleum) (Found: C, 80.4; H, 6.6; P, 5.5. $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{PO}_{3}$ requires C, 80.1; H, 6.3; P. 5.3\%); $R_{\mathrm{F}} 0.27$ (EtOAc-light petroleum 1:1); $v_{\text {max }} / \mathrm{cm}^{-1} 1670(\mathrm{C}=0$), 1650 $(\mathrm{C}=0), 1615(\mathrm{C}=\mathrm{C}), 1600(\mathrm{Ph})$ and $1440(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.83-7.16\left(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\left.\mathrm{CPh}_{3}\right), 6.64\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{HH}} 7, J_{\mathrm{HH}}\right.$ $15.4,=\mathrm{CH}), 6.20\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 1.5, J_{\mathrm{HH}} 15.4,=\mathrm{CH}\right), 3.96(1 \mathrm{H}, \mathrm{dd}$, $J_{\mathrm{HH}} 5.6, J_{\mathrm{PH}} 8.4, \mathrm{CHP}$), $3.07-3.00(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOTr}), 2.78-2.73$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHOTr}$ and CH Me), 1.66 (3 H , dd, $J_{\mathrm{PH}} 1.4, J_{\mathrm{HH}} 7.0$, $=\mathrm{CH} M e)$ and $1.00\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 9.1, \mathrm{CH} M e\right) ; m / z 342(\mathrm{M}+\mathrm{H}-$ trityl, 20\%), 341 (M - trityl, 100\%), 243 (trityl, 60\%) and 201 ($\mathrm{Ph}_{2} \mathrm{PO}, 35 \%$).
The second diastereoisomer was obtained ($R_{\mathrm{T}} 13 \mathrm{~min}$) as microcrystals ($480 \mathrm{mg}, 21 \%$); m.p. 187-188 ${ }^{\circ} \mathrm{C}$ (from EtOAclight petroleum) (Found: C, 80.2; $\mathrm{H}, 6.3 ; \mathrm{P}, 5.2 . \mathrm{C}_{39} \mathrm{H}_{37} \mathrm{PO}_{3}$ requires $\mathrm{C}, 80.14 ; \mathrm{H}, 6.34 ; \mathrm{P}, 5.3 \%$); $\mathrm{R}_{\mathrm{F}} 0.27$ (EtOAc-light petroleum 1:1); $v_{\text {max }} / \mathrm{cm}^{-1} 1670(\mathrm{C}=0), 1655(\mathrm{C}=0), 1640$ $(\mathrm{C}=\mathrm{C}), 1440(\mathrm{P}-\mathrm{Ph})$ and $1140(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.01-7.12$ $\left(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\left.\mathrm{CPh}_{3}\right), 6.36\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{HH}} 7.0, J_{\mathrm{HH}} 15.5\right.$, $=$ CHMe), $5.83\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 1.5, J_{\mathrm{HH}} 15.5,=\mathrm{CH}\right), 3.84(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{\mathrm{HH}} 10.4, J_{\mathrm{PH}} 13.8, \mathrm{CHP}\right), 3.00\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{ABX}, J_{\mathrm{AB}} 9, J_{\mathrm{AX}} 4.0\right.$, CHOTr), 2.90 ($\left.1 \mathrm{H}, \mathrm{dd}, \mathrm{ABX}, J_{\mathrm{AB}} 9.0, J_{\mathrm{BX}} 4.1, \mathrm{CHOTr}\right), 2.80-$ 2.74 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}$), 1.49 ($\left.3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 1.5, J_{\mathrm{HH}} 7.0,=\mathrm{CHMe}\right)$ and $1.09\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.7, \mathrm{Me}\right) ; m / z 341\left(\mathrm{M}-\mathrm{CPh}_{3}, 90 \%\right), 243$ $\left(\mathrm{CPh}_{3}, 100 \%\right)$, $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 85 \%\right)$ and $165(90 \%)$.

4-Diphenylphosphinoyl-2,5-dimethyl-6-triphenylmethoxyhex-1-en-3-one 4d and 5d. 3-Diphenylphosphinoyl-2-methyl-1-triphenylmethoxypropane ($400 \mathrm{mg}, 0.78 \mathrm{mmol}$) and 2 -methylpropenal ($0.06 \mathrm{~cm}^{3}, 0.78 \mathrm{mmol}$) gave after HPLC, eluting with EtOAc, the first diastereoisomer ($R_{\mathrm{T}} 10 \mathrm{~min}$) as needles (190 mg , 41%); m.p. $155-157^{\circ} \mathrm{C}$ (from EtOAc-light petroleum) (Found: $\mathrm{C}, 79.9 ; \mathrm{H}, 6.4 ; \mathrm{P} .5 .1 . \mathrm{C}_{39} \mathrm{H}_{37} \mathrm{PO}_{3}$ requires $\mathrm{C}, 80.1 ; \mathrm{H}, 6.3 ; \mathrm{P}$, 5.3%); $R_{\mathrm{F}} 0.49 ; v_{\max } / \mathrm{cm}^{-1} 1720(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{C}), 1580(\mathrm{Ph})$, $1430(\mathrm{P}-\mathrm{Ph})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.89-7.09(25 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ and $\left.\mathrm{CPh}_{3}\right)$, $5.52\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 1.4,=\mathrm{CH}\right), 5.91(1 \mathrm{H}, \mathrm{s}$, $=\mathrm{CH}), 4.65\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}} 5.8, J_{\mathrm{PH}} 12.1, \mathrm{CHP}\right), 2.98(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{OTr}$), 2.96 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}$), $1.43(3 \mathrm{H}, \mathrm{s},=\mathrm{CMe})$ and 0.96 ($3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.7, \mathrm{CH} M e$); $m / z 342 \mathrm{M}-\mathrm{HCPh}_{3}, 30 \%$), 341 $\left(\mathrm{M}-\mathrm{CPh}_{3}, 90 \%\right), 243\left(\mathrm{CPh}_{3}, 100 \%\right), 219\left(\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}, 40 \%\right)$, $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 70 \%\right)$ and 165 (60%).

The second diastereoisomer was obtained ($R_{\mathrm{T}} 13 \mathrm{~min}$) as needles ($105 \mathrm{mg}, 23 \%$); m.p. $169-170^{\circ} \mathrm{C}$ (from EtOAc-light petroleum) (Found: C, 80.4; H, 6.5; P. 5.4 $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{PO}_{3}$ requires C, 80.1; H, 6.3; P. 5.3\%); $R_{\mathrm{F}} 0.49 ; v_{\text {max }} / \mathrm{cm}^{-1} 1710$ (C=O), 1650 $(\mathrm{C}=\mathrm{C})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.14-8.06$ and 7.71-7.31 ($25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and CPh_{3}), $5.75(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}), 5.34\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}}\right.$ $1.5,=\mathrm{CH}), 4.46\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}} 10.5, J_{\mathrm{PH}} 17.2, \mathrm{CHP}\right), 2.98-2.74$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), $1.72-1.41(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 1.18\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}\right.$
7.0, $\mathrm{CH} M e$) and 1.16 ($3 \mathrm{H}, \mathrm{s},=\mathrm{CMe}$); m/z 341 ($\mathrm{M}-\operatorname{trityl}$, 100%), 243 (trityl, 75%), $219\left(\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}, 30 \%\right)$, $201\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$, 60%) and 165 (40).
E-5-Diphenylphosphinoyl-3,6-dimethyl-7-triphenylmethoxy-hept-2-en-4-one 4e and 5e. 3-Diphenylphosphinoyl-2-methyl-1triphenylmethoxypropane ($1.1 \mathrm{~g}, 2.13 \mathrm{mmol}$) and 2-methylbutenal ($0.14 \mathrm{~cm}^{3}, 2.3 \mathrm{mmol}$) gave after HPLC, eluting with EtOAc, the first diastereoisomer ($R_{\mathrm{T}} 13 \mathrm{~min}$) as microprisms ($530 \mathrm{mg}, 42 \%$); m.p. $163-165^{\circ} \mathrm{C}$ (from EtOAc-light petroleum) (Found: C, 80.3; H, 6.0; P. 5.2. $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{PO}_{3}$ requires $\mathrm{C}, 80.3 ; \mathrm{H}$, $6.5 ; \mathrm{P}, 5.2 \%$); $R_{\mathrm{F}} 0.43$ (EtOAc-light petroleum); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1650(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{C}), 1580(\mathrm{Ph})$ and $1440(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 7.94-7.17\left(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\left.\mathrm{CPh}_{3}\right), 6.65(1 \mathrm{H}, \mathrm{q}$, $\left.J_{\mathrm{HH}} 6.5, \mathrm{C}=\mathrm{CH}\right), 4.56\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}} 7, J_{\mathrm{PH}} 13.1, \mathrm{CHP}\right), 3.04(1 \mathrm{H}$, $\left.\mathrm{ABX}, \mathrm{dd}, J_{\mathrm{AB}} 9.2, J_{\mathrm{Ax}} 7.2, \mathrm{CHOTr}\right), 2.94$ ($1 \mathrm{H}, \mathrm{ABX} \mathrm{dd}, J_{\mathrm{AB}} 9.2$, $\left.J_{\mathrm{BX}} 7.2, \mathrm{CHOTr}\right), 2.85-2.73$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}$), $1.57\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}}\right.$ $0.9, J_{\mathrm{HH}} 6.9,=\mathrm{CH} M e$) and $0.96\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.8, \mathrm{CH} M e\right) ; m / z 598$ $(\mathrm{M}, 2 \%), 355\left(\mathrm{M}-\mathrm{CPh}_{3}, 20 \%\right), 243\left(\mathrm{CPh}_{3}, 100 \%\right), 219$ $\left(\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}, 90 \%\right)$ and $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 90 \%\right)$.
The second diastereoisomer ($R_{\mathrm{T}} 17 \mathrm{~min}$) was obtained as prisms ($342 \mathrm{mg}, 27 \%$); m.p. ${ }^{156-157}{ }^{\circ} \mathrm{C}$ (from EtOAc-light petroleum) (Found: C, 79.8; $\mathrm{H}, 6.55 ; \mathrm{P} .5 .1 . \mathrm{C}_{40} \mathrm{H}_{39} \mathrm{PO}_{3}$ requires C, 80.3; H, 6.5; P. 5.2\%); $\boldsymbol{R}_{\mathrm{F}} 0.43$ (EtOAc-light petroleum, 1:1); $v_{\max } / \mathrm{cm}^{-1} 1750(\mathrm{C}=\mathrm{O}), 1705(\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{C}), 1580(\mathrm{Ph})$ and $1440(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.23-8.13$ and 7.67-7.08 $(25 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and $\left.\mathrm{CPh}_{3}\right), 6.62\left(1 \mathrm{H}, \mathrm{q}, J_{\mathrm{HH}} 6.1,=\mathrm{CH}\right), 4.56(1 \mathrm{H}, \mathrm{dd}$, $J_{\mathrm{PH}} 10.7, J_{\mathrm{HH}} 18.5, \mathrm{CHP}$), $2.92\left(1 \mathrm{H}, \mathrm{dd} \mathrm{ABX}, J_{\mathrm{AB}}, 9.9, J_{\mathrm{AX}}, 3.0\right.$, CHOTr), 2.78 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{ABX}, J_{\mathrm{AB}} 9.9, J_{\mathrm{BX}} 3.8, \mathrm{CHOTr}$), $2.70-$ $2.66(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 2.10(3 \mathrm{H}, \mathrm{s},=\mathrm{Me}), 1.41\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.1\right.$, $=\mathrm{CHMe})$ and $1.21\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.8, \mathrm{CH} M e\right) ; m / z 598(\mathrm{M}, 20 \%)$, 355 (M - trityl, 100\%) and $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 70 \%\right)$.

Acknowledgements

We thank the SERC for grants (to D. H. and N. S.), Schering Agrochemicals Ltd. for a CASE award (to D. H.) and Drs. A. D. Buss and P. Dudfield for many helpful discussions.

References

1 J.-L. Luche, J. Am. Chem. Soc., 1978, 100, 2226; A. L. Gemal and J.-L. Luche, J. Am. Chem. Soc., 1981, 103, 5454.
2 J. Elliott, D. Hall and S. Warren, Tetrahedron Lett., 1989, 30, 601.
3 K. Tomioka and K. Koga in Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, New York, 1983, vol. 2, pp. 455-501.
4 L. A. Paquette, ref. 3, 1984, vol. 3, pp. 455-501.
5 S. Masamune, L. A. Reed, J. T. Davis and W. Choy, J. Org. Chem., 1983, 48, 4441.
6 W. Oppolzer, Angew. Chem., Int. Edn. Engl., 1984, 23, 876; W. Oppolzer, I. Rodriguez, J. Blagg and G. Bernadinelli, Helv. Chim. Acta, 1989, 72, 123.
7 K. A. Lutomski and A. I. Meyers, ref. 3, 1984, vol. 3, pp. 213-274.
8 G. H. Posner, ref. 3, pp. 225-241.
9 W. Oppolzer, C. Chapuis and G. Bernadinelli, Tetrahedron Lett., 1984, 25, 5885; W. Oppolzer, M. J. Kelly and G. Bernadinelli, Tetrahedron Lett., 5889.
10 W. O. George, D. V. Hassid and W. F. Maddams, J. Chem. Soc., Perkin Trans. 2, 1972, 400.
11 A. J. Mancuso, S. L. Huang and D. Swern, J. Org. Chem., 1978, 43, 2480; A. J. Mancuso and D. Swern, Synthesis, 1981, 165.
12 G. M. Sheldrick, SHELXTL Users Manual, revision 4, Nicolet XRD Corporation, Madison, Wisconsin, USA, 1983.
13 T. Liljefors and N. L. Allinger, J. Am. Chem. Soc., 1976, 98, 2745.
14 R. Barlet, M. Montagne and P. Arnaud, Spectrochim. Acta, 1969, 25A, 1081.
15 N. S. Bhacca and D. H. Williams, Tetrahedron Lett., 1964, 3127; D. H. Williams and N. S. Bhacca, Tetrahedron, 1965, 21, 2021.

16 D. Hall, A. F. Sévin and S. Warren, Tetrahedron Lett., 1991, 32, 7123. 17 T. J. Wenzel, NM R Shift Reagents, CRCPress, Boca Raton, 1988, p. 5. 18 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
19 D. D. Perrin and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon, Oxford, 1966.

20 P. F. Cann, D. Howells and S. Warren, J. Chem. Soc., Perkin Trans. 2, 24 A. D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. I, $1985,2307$. 1972, 304.
21 W. C. Still and J. C. Barrish, J. Am. Chem. Soc., 1983, 105, 2487
22 S. Hanessian and A. P. A. Staub, Tetrahedron Lett., 1973, 3555.
23 G. Singh and G. S. Reddy, J. Org. Chem., 1979, 44, 1057.
Paper 2/03948F
Received 23rd July 1992
Accepted 13th November 1992

[^0]: * For full details of the CCDC deposition scheme see, 'Instructions for Authors,' J. Chem. Soc., Perkin Trans. 1, 1993, Issue 1.

